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ABSTRACT

A model for the interface of two interacting one component

plasmas of different background densities separated by an impermeable

surface,is solved exactly in two dimensions at one special temperature.

This model emulates the behaviour of an ideally polarizable interface.

We obtain density profiles,differential capacity and surface tension as

a function of the applied potential.Pertinent sum rules are given.
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I INTRODUCTION

A model for a charged interface has been proposed recently (1,21

in which two media described by classical, one component plasmas (OCP) of

different background densities are separated by a charged gap. Although this

model is far from a realistic description of the metal-electrolyte interface,

it has the interesting feature that an exact solution can be found in two

dimensions for the special reduced temperature of 2,using the method of

Jancovici and coworkers (31 .On the other hand, as shown

in [(] ,it appears that this model does not allow any change of

the potential drop across the interface with the surface charge,and in this

sense emulates the behaviour of a non-polarizable interface.

This is a result of the fact that charged particles can move freely across

the interface,which,because of perfect screening, is probably connected to the

non-existence of long range correlations along the interface [1,2].

In the present note we consider another physically interesting situation

corresponding to the polarizable interface, such as the

classical example of the mercury-aqueous electrolyte solution interface.

For that pur-ose,we assume that between the two media there is an impermeable

surface which Prevents the ions from crossing the interface while allowing

electrical interactions between all particles.Clearly, this model is consistent

with the concept of the ideally polarizable electrode (4] .A full description

of the technical details of our solution will be given in a forthcoming

paper.Here we give only a summary of our main results.



II- PARTITION FUNCTION: METHOD OF SOLUTION

Our system consists of two concentric circles of radii R. and R.

The inner region (O<r<R,) has background charge density -eo / ,where

e is the elementary charge,and contains N partic'les of charge e
I

We want to allow for an excess charge density -eOY/ along the wall

then we must have

The outer region (R,<r<R,) has background density -e(:/ ,excess

charge density e/ and contains N particv.les of charge e.Hence

~ SI (2)

The plasma coupling parameter is

where (-i/kT is the thermal Boltzmann factor and T is the temperature

The potential energy of the system is

V V. '+ 2e i'Orji + +~ i,-

where V0 is a constant background term and N-N.,+N .Note that the charge

density eO" does not appear explicitly.

Following the method introduced by Jancovici [3] ,the canonical partition

function can be written

f ....
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where is the permutation operator between the N particles.

Since the ions are not allowed to cross the inner circle, it will be

useful to introduce a factor z which , as we will see later

fixes the ratio of the activities on both sides of the interface.

z g~can then be'written as a contour integral

Sa.@

NIL MP (5)

where

with 1%2 n +

and ILr+,i = ' " a

is the incomplete gamn a function.It is convenient to write (5) in the form

with

*~-LT ZI I

where A 'a 1A1iv

andi are the partition functions, for the uncoupled inner and outer

regions, and are introduced to insure proper convergence of the integrals

below.
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In the limit R2 ,R4 -> oo,the interface becomes a straight line, and we get

where

and m .- ZR

In this limit can be evaluated asymptotically by the method of steepest

descents ,choosing a contour z=z exp(i). We find

-IM yz<:. (9)

where z. is the position of the saddle point in the complex z.plane.

z is real and is computed from

0@ 0

For m-i we have

so that Z(-4O

In the general case, (10) must be solved numerically.

III-DENSITY PROFILE

The density f(r) can be obtained by the same method.After some

manipulations we get

i.



O(,., : .± t-for r<R. (1.1)

where

a nd

e ~ f_ for r> R1 (12)

where f--
In the limit RX, R ->oo and taking the origin of coordinates at the wall

4

(xr-R ) ,we get +4#
4I

M e117,i _. erfc(- ) + ,, -(wi &, )

(13)

The integrals in (13) can be computed numerically.The results for one typical

case are shown in Figure 1. For m=1 the contact densities have the

simple expressions

Ze o . -1 (14)

Unlike the case of the permeable [1,21 interface,the density has now

a jump at the interface.[Notice also that for zero charge and Mi=l,the

density remains constant everywhere.

1~~ 17 -w-66a



IV-POTENTIAL DFOP ANJD DIFFERENTIAL CAPACITY

The total potential drop across the interface = b( ?- can t e
calculated by integration of the density profile. dowever, this is not
necessary, since is directly connected to z which is the ratio

of the activities. Indeed we have

rne~'
(15)

where y. and j. are the chemical potentials on each side.In fact
it appears that & is the true external variable controlling the
state of the system.This is a very nice feature of this model,
because this is actually what happens in the electrochemical measurements
where the potential is externally fixed.For a given z, is obtained
from (15), and the charTge density from (10).Alternatively,using the
electroneutrality condition,we have a simpler way of calculating eo-

_ _ _ ~~~f _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _----. - e- (-,
-' M ' e f "'("tf' - "'° 4

(15)

Eq.(16) can be shown to be completely equivalent to (10).
The differential capacity C- 2_(-____ is now obtained in closed

form from (16) 'Z64)

=~ ~ ". X( T] (17)

A typical curve showing the dependence of C with potential is shown

in Figure 2.

For mn-1, C .2 0o) Zrj

7r.________________4



V-THERMODYNAMICS AND SUM RULES

From (6) and (8) the surface excesslielmholtz free energy

can be calculated. We get

Jr:: ft .4
0 tv(1k.,fl

* -l 1l (la)

where f is the surface excess free energy of the uncoupled system

Differentiating with respect to the surface charge density,we ind

the first sum rule

-(19)

It may be shown that this equation is equivalent to the statement

that our model satisfies Lippmann's eguation

(e-,
,~ (20)

where V is the surface tension defined by

(21)

where Q-eVA is the surface charge.

A similar result holds for the case of a OCP near a charged plane [5,61.

Figure 3 shows the dependence of the surface tension with potential

(electrocapillarity curve).

Another sum rule can be derived by thermodynamic arguments:

(22)

where P4 and Pare the bulk thermal pressures on each side of the



interface.Notice that this contact theorem differs from that of the permeable

interface case [7].Equation (22) is indeed satisfied by our microscopic

exoressions.

Add itional sum rules and a more comprehensive discussion

of this model will be given in future work.
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FIGURE CAPTIONS

Figure 1 Density profile.m-0.5 and 01-1l.Units are e- &4, -1.

Figure 2 Capacity as a function of the applied potentia2.m=O.5.

Figure 3 Electrocapillarity curve. m-0Q.5
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